文章摘要
引用本文:景羿铭,王融,熊智,赵耀,刘建业.基于极限学习机的黑障区智能导航算法[J].导航与控制,2020,(3):21-26 本文二维码信息
二维码(扫一下试试看!)
基于极限学习机的黑障区智能导航算法
An Intelligent Navigation Algorithm of Blackout Area Based on Extreme Learning Machine
  
DOI:
中文关键词:  导航系统  空天飞行器  黑障区  姿态修正  极限学习机
English Keywords:navigation system  space vehicles  blackout area  attitude correction  extreme learning machine (ELM)
基金项目:国家自然科学基金(编号:61533009,61673208,61703208,61873125,61533008);陆军装备部“十三五”预研(编号:30102080101);江苏省“333工程”科研资助立项(编号:BRA2016405);江苏省自然科学基金(编号:BK20181291,BK20170815,BK20170767);中央高校基本科研业务费专项(编号:NT2018108)
作者单位
景羿铭 南京航空航天大学自动化学院南京 211106 
王融 南京航空航天大学自动化学院南京 211106 
熊智 南京航空航天大学自动化学院南京 211106 
赵耀 南京航空航天大学自动化学院南京 211106 
刘建业 南京航空航天大学自动化学院南京 211106 
摘要点击次数: 21
全文下载次数: 31
中文摘要:
      在黑障区飞行阶段中,惯性导航系统会因缺少辅助导航系统而持续累积误差,导致飞行器导航系统可靠性下降。针对这一问题,提出了一种新的基于极限学习机的黑障区智能导航算法,通过极限学习机(ELM)对GPS正常工作的导航信息进行学习。在黑障区,利用学习得到的模型对惯性导航系统进行误差补偿,较好地修正了当GPS失锁时惯性导航系统的误差,避免了因误差累积而导致的导航信息发散。仿真结果表明,该算法能够保证在GPS失锁的黑障区中导航系统输出的信息有较好的可靠性和精度,能够为接下来的姿态调整和着陆准备提供良好的基础。
English Summary:
      In the flight phase of the blackout area, the inertial navigation system continues to accumulate errors due to the lack of auxiliary navigation system, which leads to the decrease of the reliability of the aircraft navigation system. To solve this problem, a new intelligent navigation algorithm of blackout area based on extreme learning machine(ELM) which can learn the normal navigation information of GPS, is proposed in this paper. In the blackout area, the error compensation of the inertial navigation system is carried out by using the learning model, which can better correct the error of the inertial navigation system when the GPS loses lock, and avoid the navigation information divergence caused by the error accumulation. The simulation results show that this algorithm can ensure the reliability and accuracy of the information output by the navigation system in the blackout area when GPS loses lock, it can provide a good foundation for subsequent attitude adjustment and landing preparation.
查看全文  查看/发表评论  下载PDF阅读器