文章摘要
引用本文:刘俊,曹慧亮,石云波,唐军,申冲.抗高过载硅微杯型振动陀螺结构设计与仿真[J].导航与控制,2019,(4):39-44 本文二维码信息
二维码(扫一下试试看!)
抗高过载硅微杯型振动陀螺结构设计与仿真
Structure Design and Simulation of Anti-high Overload Silicon Microcup Vibration Gyroscope
  
DOI:
中文关键词:  抗高过载  杯型  微机电系统  有限元分析
English Keywords:anti-high overload  cup-type  micro electro mechanical system(MEMS)  finite element analysis
基金项目:国家自然科学基金(编号:51705477);毁伤技术重点学科实验室开放基金(编号:DXMBJJ2017-15)
作者单位
刘俊 中北大学电子测试技术国防科技重点实验室太原 030051 
曹慧亮 中北大学电子测试技术国防科技重点实验室太原 030051 
石云波 中北大学电子测试技术国防科技重点实验室太原 030051 
唐军 中北大学电子测试技术国防科技重点实验室太原 030051 
申冲 中北大学电子测试技术国防科技重点实验室太原 030051 
摘要点击次数: 3
全文下载次数: 7
中文摘要:
      微机械陀螺是现代制导武器的核心器件,但是制导武器的发射过程中伴随着巨大的加速度过载。针对微机械陀螺结构在大过载情况下活动质量块受过载影响大的问题,设计了一种抗高过载MEMS杯型振动式陀螺结构。结合四波腹运动原理,对杯型陀螺结构的工作原理、振动特性以及抗高过载特性进行了分析。在ANSYS有限元分析软件中建立了该硅微杯型陀螺结构的有限元模型,分别进行了模态分析、谐响应分析。仿真分析结果显示,该硅微杯型陀螺驱动模态与敏感模态固有频率的频差为0.8kHz,工作模态的频率匹配性较好。根据冲击动力学原理分析了此结构在半周期正弦加速度冲击载荷作用下的冲击响应,谐振结构在100000g的瞬态冲击作用下的最大应力为11.38MPa,最大位移为8.06nm,证明该结构具有优良的抗冲击特性。
English Summary:
      Micromachined gyroscope is the core component of modern guided weapons, but the launching process of guided weapons is accompanied by huge acceleration overload. Aiming at the problem that the moving mass of micromechanical gyroscope is greatly affected by overload under the condition of large overload, a MEMS cup-type vibrating gyroscope structure with anti-high overload is designed. Combined with the principle of four-abdominal motion, the working principle, vibration characteristics and anti-high overload characteristics of cup-type gyroscope structure are analyzed. The finite element model of Silicon microcup gyroscope is established in ANSYS finite element analysis software. Modal analysis and harmonic response analysis are performed respectively. The simulation analysis results show that the natural frequency difference of the Silicon microcup gyroscope between driving modal and sensitive modal is 0.8kHz, the frequency matching of working modal is good. The impact response of this structure under the action of a half-cycle sinusoidal acceleration impact load is analyzed according to the principle of impact dynamics, the maximum stress and maximum displacement of the resonant structure under the transient impact of 100000g are 11.38MPa and 8.06nm respectively. It is proved that the structure has excellent impact resistance.
查看全文  查看/发表评论  下载PDF阅读器